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Abstract

The e�ects of variation (in the transverse direction) of permeability and thermal conductivity, on fully developed
forced convection in a parallel plate channel or circular duct ®lled with a saturated porous medium, is investigated
analytically on the basis of a Darcy or Dupuit±Forchheimer model. It is shown that the Dupuit±Forchheimer
problem reduces to the Darcy problem with a changed permeability variation. The cases of iso¯ux and isothermal

boundaries are treated in turn. The bulk of the results pertain to a two-step variation, but the case of a weak
continuous variation is also considered. The results for the parallel plate geometry and for the circular duct
geometry are qualitatively similar. The replacement of iso¯ux boundaries by isothermal boundaries leads to a

reduction of Nusselt number but otherwise there is little change in the pattern. The results demonstrate that the
e�ect of permeability variation is that an above average permeability near the walls leads to an increase in Nusselt
number, and this is explained in terms of variation in the curvature of the temperature pro®le. The e�ect of

conductivity variation is more complex; there are two opposing e�ects and the Nusselt number is not always a
monotonic function of the conductivity variation. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The problem of forced convection in a porous
medium channel or duct is a classical one (at least

for the case of slug ¯ow (Darcy model)). There has

recently been renewed interest in the problem

because of the use of hyperporous media in the
cooling of electronic equipment. In their recent sur-

vey of the literature, Nield and Bejan [1] refer to

over 30 papers on this topic, but none of them

deals with global heterogeneity e�ects (as distinct
from channeling e�ects due to the variation of per-
meability near walls). The present paper is designed

to ®ll this gap in the literature. There are a number
of cases of interest. First we concentrate on the
case of a channel con®ned by parallel plane walls,
and later change the geometry to that of a duct of

circular cross-section. For each geometry, we con-
sider ®rst the case of iso¯ux boundaries (i.e. with
the heat ¯ux held constant at the boundaries) and

then the case of isotemperature boundaries. For
each type of boundary condition we consider in the
main a situation where the variation of permeability

and thermal conductivity is piecewise constant, with
two steps (see Fig. 1), and supplement that by an
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analysis for the situation where the variation is

weakly continuous, i.e. the variation is continuous
but slow so that a perturbation approach is appli-
cable.

The analysis in the present paper is restricted in two
ways. Firstly, we consider only the case where the vari-
ation of permeability and conductivity is symmetric
with respect to the midline of the channel or duct. In

the case of the plane channel, the more general case is

of considerable practical interest, but as soon as the

symmetry is broken then for practical application one
needs to examine a situation for which the heating at
the walls is also asymmetric. This is a complex situ-

ation that so far has received little attention [2].
Accordingly, we leave this general case for a later
report. (A preliminary analysis has shown us that the
symmetric variation is in some ways of more scienti®c

interest than the asymmetric one, because it highlights
the subtle e�ect of property variation with distance
from the wall.)

Secondly, the analysis in the present paper is
restricted to the Darcy model or the Dupuit±Forchhei-
mer extension of that model. (As we show in the next

section, we can, for the cases in which we are inter-
ested, reduce the Dupuit±Forchheimer problem to the
Darcy problem.) The Brinkman model, as employed

for the case of a homogenous porous medium by
Kaviany [3], Cheng et al. [4], Vafai and Kim [5], and
Nield et al. [6], leads to very complicated analysis for a
heterogeneous medium, so we leave this for a later

report.

2. Analysis: parallel plate channel

2.1. Basic equations

We allow the permeability K and the thermal con-
ductivity k to be non-uniform in space, and de®ne

~K � K

�K
, ~k � k

�k
, �1�

where an overbar denotes a mean value taken over the
volume occupied by the porous medium.

Nomenclature

cF Forchheimer coe�cient
cL cFK

ÿ1=2

cp speci®c heat at constant pressure

Da Darcy number
Fr Forchheimer number
G applied pressure gradient

H half channel width
k thermal conductivity
�k mean value of k
~k k= �k
K permeability
�K mean value of K
~K K= �K
~L cL= �cL

Nu Nusselt number

q 00 heat ¯ux
u mu�=GH 2

u� velocity

û u�=U
U mean velocity
T � temperature

Tm bulk mean temperature
Tw wall temperature
T̂ �T � ÿ Tw�=�Tm ÿ Tw�

Greek symbols
ek, eK coe�cients de®ned in Eq. (19)
r density

m ¯uid viscosity
x dimensionless coordinate de®ned in Fig. 1

Fig. 1. De®nition sketch: (a) parallel plate channel; (b) circu-

lar duct.
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For the steady-state fully-developed situation we
have unidirectional ¯ow in the x �-direction between

impermeable boundaries at y� � ÿH and y� � H, as il-
lustrated in Fig. 1(a). We assume that K and k are
functions of y� only. The steady-state Dupuit±

Forchheimer equation is

G � mu�

K
� cLru�

2

, �2�

where the coe�cient cL is related to the Forchheimer

coe�cient cF used in [1] by

cL � cFK
ÿ1=2: �3�

We de®ne dimensionless variables

x � x �

H
, y � y�

H
, u � mu�

GH 2
: �4�

The dimensionless form of Eq. (2) is

u 2 � u

~K ~LFrDa
ÿ 1

~LFr
� 0: �5�

Here the Darcy and Forchheimer numbers are de®ned
by

Da �
�K

H 2
, Fr � �cLrGH 4

m 2
, �6a,b�

while

~K � K
�K
, ~L � cL

�cL

, �7a,b�

where the bar denotes the mean value. If cL can be
taken as a constant, then

~L � ~K
ÿ1=2

= ~K
ÿ1=2

dy: �8�

The positive root of the quadratic equation (5) is

u � 1

2 ~K ~LFrDa

�
ÿ 1�

�
1� 4 ~K

2 ~LFrDa 2

�1=2�
: �9�

The mean velocity U and the bulk mean temperature
Tm are de®ned by

U � 1

H

�H
0

u� dy�, Tm � 1

HU

�H
0

u�T � dy�: �10�

Further dimensionless variables are de®ned by

û � u�

U
, T̂ � T � ÿ Tw

Tm ÿ Tw

: �11�

This implies that

û � u�1
0

u dy

: �12�

In the Darcy ¯ow case, corresponding to Fr40, we

have

û � ~K: �13�
Comparing Eqs. (12) and (13), we see that we can
regard the right-hand side of Eq. (12) (after the ex-

pression in Eq. (9) has been substituted) as an equival-
ent permeability variation function ~Keq: In other
words, the Forchheimer ¯ow problem reduces to an

equivalent Darcy ¯ow problem, with ~Keq replacing ~K:
This means that in the remainder of this paper we can,
without loss of generality, concentrate exclusively on
the Darcy model.

The Nusselt number Nu is de®ned as

Nu � 2Hq 00

�k�Tw ÿ Tm �
�14�

The thermal energy equation, when the Peclet number
is large so that axial conduction is negligible, is

u�
@T �

@x �
� k

rcp

@ 2T �

@y� 2
: �15�

2.2. Iso¯ux boundaries

Use of the ®rst law of thermodynamics leads to

@T �

@x �
� dTm

dx �
� q 00

rcpHU
� constant: �16�

In this case the thermal energy equation may be writ-

ten as

d 2T̂

dy 2
� ÿ 1

2 ~k
Nu û: �17a�

For the Darcy ¯ow case this becomes

d 2T̂

dy 2
� ÿ 1

2 ~k
Nu ~K: �17b�

The boundary conditions on T̂�y� are

dT̂

dy
�0� � 0, T̂�1� � 0: �18�

2.2.1. Continuous weak variation
We ®rst consider the case where the permeability

and thermal conductivity distributions are given by
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K � K0

�
1� eK

� jy�j
H
ÿ 1

2

��
,

k � k0

�
1� ek

� jy�j
H
ÿ 1

2

��
: �19a,b�

The coe�cients eK and ek are each assumed to be small

compared with unity. The mean values of K, k are
thus K0, k0, respectively, and so

~K � 1� eK

�
jyj ÿ 1

2

�
,

~k � 1� ek

�
jyj ÿ 1

2

�
: �20a,b�

The velocity distribution is given by

û � ~K � 1� eK

�
jyj ÿ 1

2

�
, �21�

and Eq. (17) gives, to ®rst order in small quantities,

d 2T̂

dy 2
� ÿ1

2
Nu

�
1� �eK ÿ ek �

�
yÿ 1

2

��
�22�

The solution of Eq. (22) subject to the boundary con-

ditions in Eq. (18) is

T̂ � ÿ 1

24
Nu
n
6
ÿ
y 2 ÿ 1

�
� �eK ÿ ek �

ÿ
2y3 ÿ 3y 2 � 1

�o
:

�23�
The determining compatibility condition is�1
0

ûT̂ dy � 1: �24�

Substitution of the expressions (21) and (23) into (24)
leads, to ®rst order, to

Nu � 6

�
1� 1

4
eK ÿ 1

8
ek

�
: �25�

2.2.2. Stepwise variation

Suppose that

K � K1 and k � k1 for 0 < jyj < xH, �26a�

K � K2 and k � k2 for xH < jyj < H: �26b�
The mean values are given by

�K � xK1 � �1ÿ x�K2,

�k � xk1 � �1ÿ x�k2: �27a,b�

We write

~Ki � Ki

�K
and ~ki � ki

�k
for i � 1, 2: �28�

The velocity distribution is given by

û1 � ~K1 for 0 < y < x,

û2 � ~K2 for x < y < 1: �29a,b�
We have now to solve the di�erential equations

d 2T̂1

dy 2
� ÿNu ~K1

2 ~k1
for 0 < y < x,

d 2T̂2

dy 2
� ÿNu ~K2

2 ~k2
for x < y < 1, �30a,b�

subject to the symmetry and boundary conditions

dT̂1

dy
�0� � 0, T̂2�1� � 0, �31�

and the matching conditions (for temperature and heat
¯ux)

T̂1�x� � T̂2�x�, k̂1
dT̂1

dy
�x� � k̂2

dT̂2

dy
�x�: �32�

The solution is

T̂1 � Nu

4

(
~K1

~k1

ÿ
x 2 ÿ y 2

�
�

~K1

~k2

ÿ
2xÿ 2x 2

�
�

~K2

~k2

ÿ
x 2 ÿ 2x� 1

�)
,

T̂2 � Nu

4

(
~K2

~k2

ÿ
1ÿ 2x� 2xyÿ y 2

�
�

~K1

~k2
�2xÿ 2xy�

)
:

�33a,b�
Substitution into the determining compatibility con-
dition�1
0

ûT̂ dy �
�x
0

û1T̂1 dy�
�1
x
û2T̂2 dy � 1 �34�

then yields the Nusselt number expression,

Nu � 6=

(
x3

~K
2

1

~k1
� 3x 2�1ÿ x�

~K
2

1

~k2
� 3x�1ÿ x� 2

~K1
~K2

~k2

� �1ÿ x�3
~K
2

2

~k2

)
: �35�
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For the homogeneous case, ~K1 � ~K2 � ~k1 � ~k2 � 1,
this expression reduces to Nu =6, independent of the

value of x, as expected.

2.3. Isotemperature boundaries

For the case where the wall temperature Tw is held

constant, Eq. (17) is replaced by

d 2T̂

dy 2
� ÿ 1

2 ~k
Nu ûT̂: �36�

The boundary conditions, Eq. (18), remain unchanged,

but the compatibility condition is replaced by

Nu � ÿ2dT̂

dy
�1�: �37�

2.3.1. Continuous weak variation

Eqs. (19)±(21) are pertinent. In place of Eq. (22) we
now have

d 2T̂

dy 2
� ÿ1

2
Nu

�
1� �eK ÿ ek �

�
yÿ 1

2

��
T̂: �38�

This is to be solved subject to the boundary conditions
(18). We proceed to make a perturbation expansion in
terms of the small parameter e � eK ÿ ek: We let

T̂ � T0 � eT1 � e 2T2 � . . . , �39a�

Nu � Nu0 � eNu1 � e 2Nu2 � . . . �39b�
The order-zero problem is

d 2T0

dy 2
� ÿ1

2
Nu0T0, �40a�

dT0

dy
�0� � 0, T0�1� � 0,

Nu0 � ÿ2dT0

dy
�1�:

�40b�

The solution is

T0 � p
2

cos
py
2
,

Nu0 � p 2

2
: �41a,b�

The order-one problem is

d 2T1

dy 2
� ÿ1

2
Nu0T1 ÿ 1

2
Nu1T0 ÿ 1

2
Nu0

�
yÿ 1

2

�
T0,

�42a�

dT1

dy
�0� � 0, T1�1� � 0,

Nu1 � ÿ2dT1

dy
�1�:

�42b�

Eqs. (41a,b) and (42a) lead to

d 2T1

dy 2
� p 2

4
T1

� ÿp Nu1
4

cos
py
2
ÿ p3

8

�
yÿ 1

2

�
cos

py
2
: �43�

The right-hand side of Eq. (43) must be orthogonal to
T0, and this implies that

Nu1 � 1: �44�
From Eqs. (39b), (41b) and (44) we have, to ®rst
order,

Nu � p 2

2

�
1� 2

p 2 �eK ÿ ek �
�
: �45�

2.3.2. Stepwise variation
Eqs. (26)±(29) are still pertinent, but instead of Eq.

(30) we now have

d 2T̂1

dy 2
� ÿl 2

1 T̂1 for 0 < y < x,

d 2T̂2

dy 2
� ÿl 2

2 T̂2 for x < y < 1, �46a,b�

where

li �
 
Nu ~Ki

2 ~ki

!1=2

, for i � 1, 2: �47�

The solutions of Eq. (46a,b) satisfying the boundary

conditions (18) are

T̂1 � A1cos l1y,

T̂2 � A2sin l2�1ÿ y� �48a,b�
The continuity of temperature and heat ¯ux at the
interface y � x then implies the matching conditions
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A1cos l1x � A2sin l2�1ÿ x�, �49a�

~k1l1A1sin l1x � ~k2l2A2cos l2�1ÿ x�: �49b�
The condition that Eq. (49a,b) have a non-trivial sol-
ution is that

tan l1x tan l2�1ÿ x� �
~k2l2
~k1l1

: �50�

In view of Eq. (47), this equation may be regarded as
an eigenvalue equation for Nu. As soon as the value of

Nu has been found, the compatibility condition gives

A2 � Nu

2l2
, �51�

and then either Eq. (49a) or Eq. (49b) gives A1 to com-

plete the solution.
In general, Eq. (50) must be solved numerically. For

the homogenous case, ~K1 � ~K2 � ~k1 � ~k2 � 1, one can

check that l1 � l2 � p=2 makes Eq. (50) an identify in
x, so that Nu � p 2=2 and A1 � A2 � p=2 and so

T̂ � p
2

cos
py
2
, �52�

as expected.

3. Results and discussion: parallel plate channel

3.1. Weak continuous variation

Immediately from Eqs. (25) and (45), we can see the
prime e�ects of permeability variation and conductivity
on the Nusselt number. If the permeability is above

average in the region adjacent to the wall (and conse-
quently is below average in the mid-channel region), so
that eK is positive, then the Nusselt number is thereby

increased. The analysis shows that this can be
explained as follows. The de®nition (14) shows that Nu
is inversely proportional to the di�erence between the

bulk mean temperature Tm and the wall temperature
Tw: When the velocity is changing only slowly with the
coordinate y� the bulk mean temperature is approxi-
mately equal to the ordinary mean temperature. As a

consequence, Nu is approximately inversely pro-
portional to the area under the temperature pro®le, a
curve such as that illustrated in Fig. 3. The per-

meability variation enters through Eq. (17b). This indi-
cates that the curvature of the temperature pro®le is
proportional to the permeability. The greater the cur-

vature, the less the area under the pro®le. A short cal-
culation shows that the curvature near the wall (large
y ) is more important than that in mid channel (small

y ). It follows that an above average permeability near
the wall leads to a smaller area under the temperature

pro®le, and hence to a larger value of Nu.
Also from Eqs. (25) and (45) we see that the prime

e�ect of thermal conductivity variation is in the oppo-

site direction to that of permeability variation. An
above average conductivity near the wall leads to a re-
duction in Nu. Again, this may be explained in terms

of variation of the curvature of the temperature pro-
®le, arising from the fact the in Eq. (17b) the conduc-
tivity appears in the denominator, rather than the

numerator, of the right-hand side.
A comparison of Eqs. (25) and (45) indicates that in

the case of iso¯ux boundaries the magnitude of the
proportional change in Nu resulting from a given pro-

portional change in permeability is twice the corre-
sponding change due to the same amount of change in
conductivity, but in the case of isotemperature bound-

aries the proportional changes in Nu are equal in mag-
nitude. Of course, the factor p 2=2 � 4:93 that appears
in Eq. (45) is less than the factor 6 that appears in Eq.

(25), so that the change from iso¯ux to isothermal
boundaries leads to a gross reduction in the value of
Nu, and again this is explainable in terms of a change

in the curvature of the temperature pro®le. (Details of
the explanation were given by Nield et al. ([6], p. 211).

3.2. Stepwise variation

For the case of iso¯ux boundaries, and for the case

where x � 0:5 so that each medium occupies half of
the channel, plots of the Nusselt number Nu are dis-
played in Fig. 2. In accordance with the trend noted in

Section 3.1, Nu increases as K2=K1 increases, because
above average permeability and hence above average
velocity near the wall leads to a smaller di�erence
between the bulk mean temperature and the wall tem-

perature. In contrast, the way in which Nu varies with
k2=k1 is more complex. As k2=k1 increases, Nu at ®rst
increases but then goes through a maximum. It is only

at large values of k2=k1 that Nu decreases as k2=k1
increases in line with the trend observed for the case of
continuous variation. Besides the e�ect of thermal con-

ductivity on curvature of the temperature pro®le, there
is an e�ect resulting from the change in slope of that
pro®le at the interface.
The di�erence between the e�ects of permeability

variation and conductivity variation is strikingly
shown in the plots of temperature pro®les presented in
Fig. 3. Fig. 3(a) shows that in the absence of conduc-

tivity variation, the e�ect of increase of permeability
near the wall leads to pro®les with larger mean values
but with continuously varying slopes. On the other

hand, the e�ect of conductivity variation leads to pro-
®les having a discontinuity in slope, and whether this
leads to an increase or decrease in the value of the
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mean temperature depends on the relative magnitudes

of slope increment and curvature variation.

The corresponding results for the case of isotem-

perature boundaries are presented as Figs. 4 and 5.

Compared with the iso¯ux case, the major change is

that, for most values of the permeability and conduc-

tivity parameters, the Nusselt number is reduced (and

the temperature pro®les become more peaked), as

expected. The exception is when conductivity near the

wall is much less than average, and in this case the

Nusselt number is already small. The trends relating to

permeability and conductivity variation are similar for

the two types of thermal boundary conditions.

4. Analysis: circular duct

4.1. Basic equations

The analysis for the case of a circular duct follows

closely that for a parallel plate channel, so we can
omit some details. Fig. 1(b) is applicable. The bound-
ary is now at r� � R, and R replaces H as the length

scale used in dimensionless quantities. For example,
the Nusselt number is now de®ned as

Nu � 2Rq 00

�k�Tw ÿ Tm �
�53�

Fig. 2. Nusselt number for the parallel plate channel with iso¯ux boundaries: (a) e�ect of permeability variation; (b) e�ect of ther-

mal conductivity variation.
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The mean velocity U and the bulk mean temperature
Tm are now de®ned by

U � 2

R 2

�R
0

u�r� dr�,

Tm � 2

R 2U

�R
0

u�T �r� dr�:

�54�

The thermal energy equation is

u�
@T �

@x �
� k

rcp

�
@ 2T �

@r� 2
� 1

r�
@T �

@r�

�
: �55�

4.2. Iso¯ux boundaries

The ®rst law of thermodynamics leads to

@T �

@x �
� dTm

dx �
� 2q 00

rcpRU
� constant: �56�

In this case the thermal energy equation may be writ-
ten as

d 2T̂

dr 2
� 1

r

dT̂

dr
� ÿ1

~k
Nu û: �57�

Fig. 3. Temperature pro®les for the parallel plate channel with iso¯ux boundaries: (a) e�ect of permeability variation; (b) e�ect of

thermal conductivity variation.
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The boundary conditions on T̂�r� are

dT̂

dr
�0� � 0, T̂�1� � 0: �58�

4.2.1. Continuous weak variation
We now consider the case where the permeability

and thermal conductivity distributions are given by

K � K0

�
1� eK

�
r�

R
ÿ 2

3

��
,

k � k0

�
1� ek

�
r�

R
ÿ 2

3

��
: �59a,b�

The mean values of K, k are thus K0, k0, respectively,
and so

~K � 1� eK

�
rÿ 2

3

�
,

~k � 1� ek

�
rÿ 2

3

�
: �60a,b�

The velocity distribution is given by

û � ~K � 1� eK

�
rÿ 2

3

�
, �61�

and Eq. (57) gives, to ®rst order in small quantities,

Fig. 4. Nusselt number for the parallel plate channel with isotemperature boundaries: (a) e�ect of permeability variation; (b) e�ect

of thermal conductivity variation.
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d 2T̂

dr 2
� 1

r

dT̂

dr
� ÿNu

�
1� �eK ÿ ek �

�
rÿ 2

3

��
: �62�

The solution of Eq. (62) subject to the boundary con-
ditions Eq. (58) is

T̂ � ÿ 1

36
Nu
n
9�r 2 ÿ 1� � �eK ÿ ek �

ÿ
4r3 ÿ 6r 2 � 2

�o
:

�63�
The compatibility condition is�1
0

ûT̂r dr � 1

2
: �64�

Substitution of the expressions (61) and (63) into (64)

leads, to ®rst order, to

Nu � 8

�
1� 4

15
eK ÿ 2

15
ek

�
�65�

4.2.2. Stepwise variation

Suppose that

K � K1 and k � k1 for 0 < jyj < xR, �66a�

K � K2 and k � k2 for xR < jyj < R: �66b�

The mean values are given by

�K � x 2K1 �
ÿ
1ÿ x 2

�
K2,

Fig. 5. Temperature pro®les for the parallel plate channel with isotemperature boundaries: (a) e�ect of permeability variation; (b)

e�ect of thermal conductivity variation.
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�k � x 2k1 �
ÿ
1ÿ x 2

�
k2: �67a,b�

The velocity distribution is given by

û1 � ~K1 for 0 < r < x,

û2 � ~K2 for x < r < 1: �68a,b�

We have now to solve the di�erential equations

d 2T̂1

dr 2
� 1

r

dT̂1

dr
� ÿNu ~K1

~k1
for 0 < r < x,

d 2T̂2

dy 2
� 1

r

dT̂2

dr
� ÿNu ~K2

~k2
for x < r < 1, �69a,b�

subject to the symmetry and boundary conditions

dT̂1

dr
�0� � 0, T̂2�1� � 0, �70�

and the matching conditions (for temperature and heat

¯ux)

T̂1�x� � T̂2�x�, ~k1
dT̂1

dr
�x� � ~k2

dT̂2

dr
�x�: �71�

The solution is

T̂1 � Nu

4

(
~K1

~k1

ÿ
x 2 ÿ r 2

�
�

~K1

~k2

ÿ
ÿ 2x 2ln x

�
�

~K2

~k2

ÿ
ÿ x 2 � 2x 2ln x� 1

�)
,

T̂2 � Nu

4

(
~K2

~k2

ÿ
1� 2x 2ln rÿ r 2

�
ÿ

~K1

~k2

ÿ
2x 2ln r

�)
:

�72a,b�

Substitution into the compatibility condition then
yields the Nusselt number expression,

Nu � 8=

(
x4

~K
2

1

~k1
ÿ 4x4ln x

~K
2

1

~k2

�
ÿ
4x 2 ÿ 4x4 � 8x4ln x

� ~K1
~K2

~k2

�
ÿ
1ÿ 4x 2 � 3x4 ÿ 4x4ln x

� ~K
2

2

~k2

)
�73�

For the homogeneous case, ~K1 � ~K2 � ~k1 � ~k2 � 1,
this expression reduces to Nu � 8, independent of the
value of x, as expected.

4.3. Isotemperature boundaries

For the case where the wall temperature Tw is held
constant, Eq. (57) is replaced by

d 2T̂

dr 2
� 1

r

dT̂

dr
� ÿ1

~k
Nu ûT̂: �74�

The boundary conditions, Eq. (58), remain unchanged,
but the compatibility condition is replaced by

Nu � ÿ2dT̂

dr
�1�: �75�

4.3.1. Continuous weak variation

Eqs. (59)±(61) are pertinent. In place of Eq. (62) we
now have

d 2T̂

dr 2
� 1

r

dT̂

dr
� ÿNu

�
1� �eK ÿ ek �

�
rÿ 2

3

��
T̂: �76�

The order-zero problem is

d 2T̂0

dr 2
� 1

r

dT̂0

dr
�Nu0T0 � 0, �77a�

dT̂0

dr
�0� � 0, T0�1� � 0, Nu0 � ÿ2dT̂0

dr
�1�:

�77b�
The solution is

T0 �
~lJ0
ÿ
~lr
�

2J1
ÿ
~l
� , �78a�

Nu0 � ~l
2 �78b�

The order-one problem is

d 2T1

dr 2
� 1

r

dT1

dr
�Nu0T1 � ÿNu1T0 ÿNu0

�
rÿ 2

3

�
T0,

�79a�

dT1

dr
�0� � 0 T1�1� � 0, Nu1 � ÿ2dT1

dr
�1�: �79b�

The right-hand side of Eq. (79a) must be orthogonal
to T0, and this implies that�1
0

�
Nu1T

2
0 �Nu0

�
rÿ 2

3

�
T 2

0

�
r dr � 0, �80�

and this gives
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Nu1 �

�1
0

Nu0

�
2
3rÿ r 2

�
T 2

0 dr�1
0

rT 2
0 dr

: �81�

By direct numerical integration one ®nds that Nu1 �
1:403:
From Eqs. (39b) and (78b) we then have, to ®rst

order,

Nu � 5:783
�
1� 0:243�eK ÿ ek �

	
: �82�

4.3.2. Stepwise variation
Eqs. (66)±(68) are still pertinent, but instead of Eq.

(69) we now have

d 2T̂1

dr 2
� 1

r

dT̂1

dr
� l 2

1T1 � 0, for 0 < y < x,

d 2T̂2

dy 2
� 1

r

dT̂2

dr
� l 2

2T2 � 0, for x < y < 1, �83a,b�

where

li �
 
Nu ~Ki

~ki

!1=2

, for i � 1, 2: �84�

The solutions of Eq. (83a,b) satisfying the boundary

Fig. 6. Nusselt number for the circular duct with iso¯ux boundaries: (a) e�ect of permeability variation; (b) e�ect of thermal con-

ductivity variation.
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conditions (70) are

T̂1 � A1J0�l1r�,

T̂2 � A2

�
Y0�l2 �J0�l2r� ÿ J0�l2 �Y0�l2r�

	
: �85a,b�

The continuity of temperature and heat ¯ux at the
interface y � x then implies the matching conditions

A1J0�l1x� � A2

�
Y0�l2 �J0�l2x� ÿ J0�l2 �Y0�l2x�

	
A1

~k1l1J1�l1x�

� A2
~k2l2

�
Y0�l2 �J1�l2x� ÿ Y0�l2 �Y1�l2x�

	 �86a,b�

The condition that Eqs. (86a,b) have a non-trivial sol-
ution is that

J1�l1x�
J0�l1x�

�
Y0�l2 �J0�l2x� ÿ J0�l2 �Y0�l2x�

��
Y0�l2 �J1�l2x� ÿ J0�l2 �Y1�l2x�

� � ~k2l2
~k1l1

: �87�

In view of Eq. (84), this equation may be regarded as
an eigenvalue equation for Nu. As soon as the value of
Nu has been found, the compatibility condition gives

A2 � Nu

2l2
�
Y0�l2 �J1�l2 � ÿ J0�l2 �Y1�l2 �

	 , �88�

and then either Eq. (86a) or Eq. (86b) gives A1 to com-
plete the solution.

Fig. 7. Temperature pro®les for the circular duct with iso¯ux boundaries: (a) e�ect of permeability variation; (b) e�ect of thermal

conductivity variation.
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In general, Eq. (88) must be solved numerically. For

the homogenous case, ~K1 � ~K2 � ~k1 � ~k2 � 1, one can
check that l1 � l2 � 2:40483 � ~l (the smallest positive
zero of J0�x�� makes Eq. (87) an identity in x, so that

Nu � �2:40483� 2 � 5:783 and

T̂ �
~lJ0
ÿ
~lr
�

2J1
ÿ
~l
� , �89�

as expected.

5. Results and discussion: circular duct

The results for the circular duct are closely similar

to those for the parallel plate channel, the most promi-

nent di�erence being that the Nusselt numbers for the
circular duct are higher than those for the parallel
plate channel. This arises because of the additional

weighting factor r involved in averages for the case of
circular geometry.
The expressions given by Eqs. (65) and (82), for the

weak continuous variation and iso¯ux and isothermal
boundaries respectively, are qualitatively similar to the
corresponding expressions, namely (25) and (45), for
the parallel plate channel.

For the stepwise variation situation the relevant
results are presented by Figs. 6 and 7 for the iso¯ux
boundaries, and Figs. 8 and 9 for the isotemperature

boundaries. We see that the trends shown earlier, in

Fig. 8. Nusselt number for the circular duct with isotemperature boundaries: (a) e�ect of permeability variation; (b) e�ect of ther-

mal conductivity variation.
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Figs. 2±5 for the parallel plate channel, are repeated

here. In fact, the corresponding pairs of Nusselt num-

ber plots (compare Fig. 6 with Fig. 2 and Fig. 8 with

Fig. 4) are very similar. For the corresponding pairs of

temperature pro®les (compare Fig. 7 with Fig. 3 and

Fig. 9 with Fig. 5) the way in which the temperature

pro®le changes with conductivity variation is again

remarkably similar, but a change shows up in the case

of permeability variation. Note that in each of Figs.

7(a) and 9(a) two curves intersect each other, but in

each of Figs. 3(a) and 5(a) there is no intersection.

This subtlety involves the interaction of the e�ects of

additional weighting factor and the variation of tem-

perature pro®le curvature.
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Note added in proof. We are indebted to Dr J.L.

Lage of Southern Methodist University for pointing

out to us that we should justify the dropping of a term

�dk=dy� @T �=@y� while retaining k@ 2T �=@y�2 in Eq.

(15). The term dropped is identically zero for the step-

wise constant case, and is small in comparison with the

one retained in the continuous weak variation case.

Fig. 9. Temperature pro®les for the circular duct with isotemperature boundaries: (a) e�ect of permeability variation; (b) e�ect of

thermal conductivity variation.
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